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I.    Introduction 

Single crystals under loading slide along certain directions on certain planes. This slip 

depends on the resolved shear stress in the slip system and is independent of the normal pressure 

on the sliding plane. This crystal characteristic is known as the Schmid's law. This Schmid's law 

also holds under cyclic loading (Parker, 1961). In a face-centered cubic (fee) material, there are 

four slip planes, on each of which there are three slip directions, giving a total of twelve slip 

systems. A micromechanic theory of fatigue crack initiation has been developed to model the 

gating mechanism of fatigue band in polycrystals (Lin and Ito, 1969; Lin 1992). A fatigue band is 

composed of three thin slices P, Q, and R in a most favorably oriented surface crystal (Figure 1) 

was considered. Lin (1992) has shown that cyclic tension and compression loading causes 

alternate monotonic buildup of plastic shear strains in both P and Q to form a persistent slip band 

(PSB). This, in turn, causes the growth of extrusions and intrusions (Forsyth and Stubbington, 

1955) at the free surface of the polycrystal. 

These PSB's are preferred sites of fatigue crack initiation. Hence, the depth of intrusion 

and the height of extrusion are taken as a measure of the fatigue damage. The thickness of the 

slices P, Q, and R is much smaller than their length (along X3-axis). The plastic strain caused by 

slip in the central part of the band is close to being constant along the length, so the central portion 

of the band is considered to be under plane deformation. 

All metals have initial defects, and have initial stresses. These initial stresses play an 

important role in fatigue crack initiation. Lin and Ito (1969) first point out;that the initial stress 

field favorable to extrusions and intrusions can be caused by a row of dislocation dipoles. Later, 

these dislocation dipoles have been observed in the ladder structure in persistent slip bands 

(Antonopoulos, 1976; Mughrabi, 1981). These dipoles induce initial resolved shear stresses at the 

interface between the PSB and the matrix. 

Extrusion causes elongation and a tensile stress in R. This stress combined with applied 

cyclic stress can activate a second slip system to slide. This slip in the secondary slip system 

enhances the extent of extrusion (Lin etai, 1989). Interchanging the signs of the initial stresses in 

P and Q initiates an intrusion instead of an extrusion. This theory of fatigue crack initiation has 

overwhelming metallurgical evidences (Lin, 1977). 
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Figure 1 
Fatigue band in the most favorably oriented surface crystal. 

II.    Elastic Anisotropy of Crystal in Polycrystal 
Fatigue Band Formation 

The above model mainly concerned with the fatigue crack initiation of aluminum and its 

alloys. The elastic anisotropy of their individual crystals is insignificant and accordingly neglected. 

Hence, this surface crystal is assumed to be embedded in an elastically isotropic and homogeneous 

semi-infinite medium. Thus this problem is reduced to an anisotropic inclusion in an elastic 

isotropic semi-infinite solid. This heterogeneous solid is then transformed into a homogeneous 

one using Eshelby's Equivalent Inclusion Method by introducing an extra set of eigenstrain 



(Eshelby, 1957; Mura, 1982). Then the calculation of stress and strain fields can be carried out in 

the same way as for a single phase solid. 

A method of inelastic analysis of elastic isotropic homogeneous solids has been developed 
by Lin and Ito (1966) and Lin (1971). The residual stress T^(X) at a point x in an infinite elastic 

isotropic medium caused by a unit plastic strain ekl(x') in an elemental volume Av' at x' is 

expressed as (Lin, 1971) 

x'y(x) = Gijkl{x,x')ep
kl(x')Av' (1) 

where Av' is an elemental volume and G^ (x, x') is the influence coefficient of the stress xr
tj (x) at 

x caused by unit plastic strain ekl(x') in x'. In the following, Av' is omitted to simplify writing. 

Consider first a homogeneous isotropic solid subject to a uniform loading; i.e., the surface traction 
Si along X-axis per unit area with an exterior normal v equals x°g Vj. The stress is uniform and 

equal to x°„ with a corresponding strain e°j.  If this body has subdomain Q in the region D-Q, as 

shown in Figure 2, with elastic moduli Cijkl different from those of D-Q denoted by Cijkl, this 

inclusion would give a disturbance strain e(j and disturbance stress x^ .   Now the stress in Q 

would be Ciikl{e°j + etj) and that in D-Q would be Cijkl(e°j +e(j). 

Eshelby (1957, 1961) ingeniously pointed out that this disturbance stress xi} can be 

simulated by an inelastic strain, referred to as an eigenstrain e^ (Mura, 1982) to differentiate it 

from the inelastic strain which commonly represent the plastic and creep strain. If we let 

*       „* 

"4 - Qjki(% + eu -eu) = cm(*« + ««) in Q (2) 

we can replace the subdomain with Cijkl by one with Cijkl. After this imaginary replacement, we 

have a homogeneous solid with elastic moduli Cijkl. e{j has the same effect as efj in causing 

residual stress. We have from Eq. (1) 

Let Syy be the elastic compliance of the region D-Q. From Eqs. (2) and (3), 

%(x) = sw Gijki(*> x')4(x') + 4(x') (4) 

C*jkl4l + C*jkl[SklmnGmnrs(X,X>rs (*') + «LOO] = "^  + Gijld(X,x')e*kl(x') (5) 
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Figure 2 
Anisotropie surface crystal embedded in an isotropic semi-infinite medium. 

This gives the solution of ekl(x'). If we have plastic strain e?, Eqs. (2) and (4) become 

c*jki(4i - 4i + *ki) = Qjki (4i - 4i + «« -««) 

%(x) = Sm Gijkl(x, x')[e[l(x') + 4(x')] + 4(x') + ekl{x') 

^W4l + Clkl{\lmnGmnrs(X>X')[e?s(x') + <£(*')] + 4(X')} 

= *J + %z(x,x')[e&(x') +4(x')] 

(6) 

(7) 

(8) 

With e?(x') known, Eq. (8) gives the solution of eJx'), 



This method was applied to find the plastic strain distribution in a fatigue band in the most 

favorably oriented crystal located at a free surface of the polycrystal. The surface crystal was 
considered to have anisotropic elastic constants Cijkl and the remaining part of the polycrystal was 

assumed to be elastically isotropic, as shown in Figure 2. In the numerical calculation, the 

anisotropic surface crystal, including the thin slices P, Q, and R was divided into a number of 

elements. Plastic deformation is highly concentrated in the fatigue band. There is no plastic strain 
# 

outside P, Q, and R. By using the method described above, the eigenstrain e(j, which is used to 

transform the heterogeneous body into a homogeneous one, is composed of two parts, one from 

the applied load and the other from the plastic strain. The contribution of these parts lead to the 

change of Schmidt factors and stress influence coefficients, and hence the slip distributions in the 

bands. 

In the following numerical calculation, these closely located thin slices P, Q, and R in the 

crystal are considered to have a small positive initial resolved shear stress in P and a negative one 

in Q. The anisotropic elastic constants of NisAl intermetallic compound, experimentally obtained 

by Yang (1985), are used. The isotropic elastic constants of the surrounding metal composed of 

crystals of random orientation are obtained by a conventional approximate average methods such as 

Voigt or Reuss methods. Assuming the strain-hardening in P and Q to be zero and using the 

numerical method developed by Lin etal. (1989), we have obtained some preliminary plastic strain 

distributions in the fatigue band under cyclic tension and compression at 10 and 20 cycles as 

shown in Figure 3. This effect of elastic anisotropy will be further studied for the cases of multiple 

fatigue band in the most favorably oriented crystal and on the propagation of the fatigue band 

across the grain boundary. The heterogeneous inclusion causes a varying stress field in the body 
under uniform loadings x22. The Schmidt factor in the bands is 0.5 if the solid is homogeneous 
and isotropic. With the anisotropic inclusion Cijld, the Schimdt factor varies along the bands. The 

part of the band with this Schmidt factor greater than 0.5 will slide and start to form a fatigue band. 

This will cause different distributions of plastic strain in P and Q and affect considerably the 

growth of fatigue band of the material. 

The microstress of the fatigue band in the surface crystal depends not only on the 

anisotropic elastic constants of the crystal, but also on these anisotropic constants of all the 

crystals. The previous study considers only the elastic anisotropy of the surface crystal. Further 

study considers also the elastic anisotropy of the surrounding crystals. The details of the analysis 

and the results are given in the paper "Elastic Anisotropy Effect of Crystals on Polycrystal Fatigue 

Crack Initiation", published in the Journal of Engineering Materials and Technology, ASME, 

Vol. 117, No. 4, pp. 470-477. A copy of the paper is given in the appendix. 
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Figure 3 
Plastic shear strain distribution along band considering band anisotropy in the surface crystal. 

III.   Fatigue Bands in Single Crystal 

Single crystals are often used in jet engines. Extrusions and intrusions in PSBs have been 

observed in these single crystals under high-cycle fatigue (HCF) loadings. These PSBs are the 

preferred sites of fatigue crack initiation. Hence this study is of both scientific interest and 

engineering needs. 

The growth of extrusion and intrusion in polycrystal of elastic isotropy has been studied by 

Lin and his associates (Lin et al., 1989; Lin, 1992). To analyze this growth in a polycrystal, the 

fatigue bands are assumed to occur in a most favorably oriented crystal embedded at a free surface 

of the metal.  The analysis is reduced to a plane strain solution of a semi-infinite elastically 



isotropic solid. The cross-section of the single crystal is assumed to be rectangular (Figure 4) with 

"b" considerably larger than "a". The deformation of the center portion will be close to plane 

strain. The fatigue band in this portion is considered to represent that of the single crystal. Using 

the solution of fatigue bands in polycrystal (Lin, 1992), we obtain the stress field of this surface 

crystal with boundary tractions as shown in Figure 5(a). To find the stress field due to this slid 

grid in the single crystal, these boundary tractions are to be relieved by a set of equal and opposite 

tractions using finite element method (FEM), as shown in Figure 5(b). The sum of the stresses 

given by Figures 5(a) and 5(b) gives the residual stress field due to the slid grid, as shown in 

Figure 5(c). 

4 4 

y?45° 

♦ wU 
Figure 4 

Single crystal under cyclic tension and compression loadings. 

(c) 

Figure 5 
Superposition of semi-infinite plane strain solution and finite element solution. 



The localization of the surface traction (Figure 5(b)) depends on the distance of the slid grid 

from the boundary. The amount of numerical work and the difficulty of the FEM to achieve a 

given accuracy depends on the distance. Hence, for a slid grid in the left half of the crystal, as 

shown in Figure 5(a), the free surface of the semi-infinite solid is taken on the left. Similarly, for a 

slid grid in the right half, the free surface is taken to be on the right. By this way, the boundary 

traction would be much less localized. This would facilitate greatly the FEM calculations. 

In 1980, Mecke and Blochwitz performed an experiment using nickel single crystal to 

study the behavior of PSBs under cyclic loadings. This experiment was conducted at room 
temperature and at a constant plastic strain amplitude of e^ = 1.3xl0~3. The result is shown in 

Figure 6 after many cycles of loadings. This figure shows that both the PSBs and the subgrain 

boundaries (SGB), 1 to 2 u.m each in width, have penetrated across the whole crystal and extruded 

from both sides. 

PSB PSB     PSB 

Figure 6 
Extrusions observed in single crystal. 

Using the numerical method developed as described, we consider a seven band face- 

centered cubic single crystal loaded in cyclic tension and compression. This model is shown in 

Figure 7. The most favorably slip system, called the primary slip system, makes an angle of 45° 

with the specimen axis. As in the previous models (Figure 1), each fatigue band is composed of 

three thin slices. These slices in the left half are denoted by P, Q, and R, and those in the right half 

are denoted by P', Q', and R. As R and R' extrudes, a second slip system may be activated. 

This crystal is assumed to be elastically isotropic. The shear modulus \i is taken to be 50 GPa and 

Poisson's ratio is taken to be 0.3. The critical shear strength oc is assumed to be 200 MPa and the 
applied stress a22 is 400 MPa. 

10 
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Figure 7 
Isotropie seven band model of the single crystal. 

To see the effect of the location of initial tensile strain in R on the extrusion growth, the 

grid with this initial strain was taken to be in the left, then at the center, and finally at the right 

portion of a single fatigue band. The calculated plastic strain variations with the number of loading 

11 



cycles are shown in Figure 8. All three locations show positive shear strain in P and a negative 

one in Q, showing the occurrence of extrusions. 
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Figure 8 
Plastic strain distribution at left free surface. 
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Then the initial tensile stress at the center and the applied cyclic loadings are increased until 

the plastic strain occur in both the primary and secondary slip systems. These primary and 

secondary plastic strains variations along the band at different loading cycles are shown in Figure 9 

and 10, respectively. 
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Figure 9 
Plastic strain in primary slip system of Q. 
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Figure 10 
Plastic strain in secondary slip system of R. 

These gives some preliminary results of HCF bands in single crystal. 
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Elastic Anisotropy Effect of 
Crystals on Polycrystal Fatigue 
Crack Initiation 
Fatigue bands have been observed in both monocrystalline and poly crystalline metals. 
Extrusions and intrusions at the free surface of fatigued specimens are favorable 
sites for fatigue crack nucleation. Previous studies (Lin and Ho, 1969; Lin, 1992) 
mainly concerned the fatigue crack initiation in aluminum and its alloys. The elastic 
anisotropy of individual crystals of these metals is insignificant and was accordingly 
neglected. However, the anisotropy of the elastic constants of some other metallic 
crystals, such as titanium and some intermetallic compounds, is not negligible. In 
this paper, the effect of crystal anisotropy is considered by using Eshelby's equivalent 
inclusion method. The polycrystal analyzed is Ni3Al intermetallic compound. The 
plastic shear strain distributions and the cumulative surface plastic strain in the 
fatigue band versus the number of loading cycles were calculated, and the effect of 
crystal anisotropy on the growth of the extrusions was examined. 

1   Introduction 
The process of fatigue failure in ductile metals is divided 

into the following three stages: (1) the crack initiation, (2) the 
growth and coalescence of rhicrocracks to form some mac- 
rocracks, and (3) the propagation of dominant cracks leading 
to the final catastrophic failure. In high-cycle fatigue, fatigue 
crack initiation predominates fatigue life. Fatigue bands are the 
favorable sites for the nucleation of fatigue microcracks. 

Fatigue bands consist of highly localized plastic strains and 
have been observed in both single crystals and polycrystals. 
Plastic strains are mainly due to the movement of dislocations. 
Under the cyclic loading, the localized plastic deformation in- 
creases with the number of loading cycles and causes extrusions 
and intrusions at the free surface of metals. The height of extru- 
sions or the depth of intrusions is here taken as a measure of 
fatigue damage. 

A theory of micromechanics of fatigue crack initiation has 
been proposed to model the gating mechanism of fatigue bands 
in polycrystals (Lin and Ito, 1969; Lin, 1992). A fatigue band 
composed of three thin slices P, Q, and R in a most favorably 
oriented surface crystal was considered. Under cyclic tension 
and compression loading, the alternate monotonic build-up of 
plastic shear strains in both P and Q causes the growth of 
extrusions or intrusions at the free surface of polycrystals. Since 
this model is concerned mainly with the fatigue crack initiation 
of aluminum and its alloys, the elastic anisotropy of their indi- 
vidual crystals is insignificant and accordingly neglected. Hence 
the surface crystal is assumed to be embedded in an elastically 
isotropic and homogeneous semi-infinite medium. For some 
other polycrystalline metals, such as titanium and some inter- 
metalic superalloys, however, the elastic anisotropy of crystals 
is not negligible. For such polycrystals, the local microstress 
field in a crystal depends not only on the applied stresses but 
also on the orientations of its surrounding crystals. Hence the 
elastic anisotropy of crystals will affect the fatigue crack initia- 
tion in these metals. 

In this paper, the elastic anisotropy of individual grains in a 
polycrystal is considered. A fatigue band is assumed to occur 
in the most favorably oriented surface crystal. This crystal is 
surrounded by the crystals of various given orientations. The 

Contributed by the Materials Division for Publication in the JOURNAL OF ENGI- 
NEERING MATERIALS AND TECHNOLOGY. Manuscript received by the Materials 
Division June 3, 1995. Associate Technical Editor: G. J. Weng. 

crystals outside the surrounding crystals are randomly oriented 
and assumed to be isotropic and homogeneous. Hence this sur- 
face crystal and the surrounding crystals of given orientations 
are considered to be embedded in a semi-infinite isotropic and 
homogeneous elastic medium. Thus it becomes an inclusion 
problem. This heterogeneous solid is transformed into a homo- 
geneous one by using Eshelby's equivalent inclusion method 
(Eshelby, 1957, 1961; Mura, 1982). In this method, an extra 
set of eigenstrains is introduced. These eigenstrains can be ex- 
plicitly expressed in terms of the applied stresses and plastic 
strains. After this transformation, the procedures for this micro- 
mechanical analysis are the same as those given by Lin (1992) 
for elastically isotropic polycrystals. In the following numerical 
calculation, the anisotropic elastic constants of Ni3Al monocrys- 
talline intermetallic compound (Yang, 1985) were used. The 
isotropic elastic constants of the surrounding metal were taken 
from the experimental data (Stoloff, 1989). The plastic strain 
distributions and the cumulative surface plastic strains in the 
fatigue band versus the number of loading cycles were calcu- 
lated, and the effect of elastic anisotropy on the formation of 
extrusions and intrusions was examined. 

2   Gating Mechanism Provided by Microstress Field 
Single crystal tests show that slip occurs on certain crystallo- 

graphic planes along certain directions. This slip depends on 
the resolved shear stress in the slip system and is independent 
of the normal stress on the sliding plane. The dependence of 
slip on the resolved shear stress is known as the Schmid law. 
It has been shown that the Schmid law also holds when crystal- 
line solids are subjected to cyclic loading (Parker, 1961). For 
a face-centered cubic crystal (FCC), there are four slip planes, 
on each of which, there are three slip systems. These twelve 
slip systems are shown in Fig. 1. 

All metals have initial defects, hence, have initial stresses. 
These initial stresses play an important role in fatigue crack 
initiation. Lin and Ito (1969) first point out that the initial stress 
field favorable to extrusions and intrusions can be caused by a 
row of dislocation dipoles. Later, these dislocation dipoles have 
been observed in the ladder structure in a persistent slip band 
(PSB) (Antonopoulos, 1976; Mughrabi, 1982). These dipoles 
induce initial resolved shear stresses at the interface between 
the PSB and the matrix. 

Based on experimental observations, a micromechanic theory 
of fatigue crack initiation was proposed by Lin and Ito (1969). 
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Slip Systems and Their Directions 

Slip System Slip Plane Slip Directon 
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Fig. 1    Crystallographic slip planes and directions of FCC crystals 

In this model, a most-favorably oriented surface crystal con- 
taining a fatigue band composed of three thin slices P, Q, and 
R in a semi-infinite polycrystal shown in Fig. 2 is considered. 
The slip plane and slip direction of the primary slip system aß 
form an angle of 45 deg with the loading axis. Lin and Lin 
(1983) have calculated a uniform initial resolved shear stress 
field r', positive in P and negative in Q, caused by a distribution 
of plastic strains. This initial stress field satisfies the conditions 
of both compatibility and equilibrium. During the cyclic load- 
ing, plastic strains occur in P, Q and R and cause a residual 
stress field. The total resolved shear stress r in a slip system is 
the sum of three stresses as 

where TA
 is the resolved shear stress caused by the applied load 

and T" the residual resolved shear stress due to plastic strains. 
A tensile loading all on the polycrystal produces a positive 

rA in the entire surface crystal. Since T' in P is positive, the 
total resolved shear stress r in P, which is T

A
 + T', reaches 

the critical shear stress rc first; and hence, according to Schmid 
law, P slides. The plastic shear strain caused by this slip in P 
produces a residual stress field rR, which has negative resolved 
shear stress in Q and makes Q to slide more readily in the 
reverse loading. The negative slip in Q induces in turn a positive 
residual resolved shear stress rR in P making P more readily 
to slide under the next tensile loading. This process is repeated 
during the cyclic loading for every cycle thus providing a natural 
gating mechanism for a monotonic buildup of local resolved 
plastic shear strain ep

ap in both P and Q, pushing R out of the 
free surface and promoting an extrusion. The elongation of R 
may activate a secondary slip system to slide. The effect of slip 
in the secondary slip system enhances the extent of extrusion 
(Lin, et al., 1989). Interchanging the signs of the initial stresses 
in P and Q initiates an intrusion instead of an extrusion. This 
micromechanical theory on fatigue crack initiation has over- 
whelming metallurgical experimental evidences (Lin, 1977). 

3   Calculation of Residual Stress Field 

3.1 Residual Stress Field. The residual stress field due 
to a distribution of inelastic strains can be calculated by the 
analogy between inelastic strains and applied forces (Lin, 
1969). It has been shown that the equivalent body force per 
unit volume along the x,-axis due to inelastic strains e," is 

* / ^iii ijU^klJ (1) 

where Cijk, is the elastic modulus. The summation convention 
is used here and the subscript after a comma denotes the differ- 
entiation with respect to the coordinate variable. For isotropic 
elastic solids, the elastic constants are 

QJU = \6v6u + fj,(6it6j! + 8ii6jk) 

where X and ß are Lame's constants and 5,y is the Kronecker 
delta. The equivalent surface force per unit area along the xr 

axis has been shown as 

<& n n n n i 
tX2 

11 1 Ulli 1 
Fig. 2   Fatigue band in the most favorably oriented surface crystal 

Si — CijyeuVj (2) 

where i/,- is the direction cosine of the normal to the area. The 
fictitious stresses <rj(x) at point x caused by equivalent forces 
in domain Q can be written by using the Green's function as 

aj(x)= f T$(x,x')Fk{x')dn+ f Tl(x,x')Sk(x')dT 
Ja Jr 

= -CÖTO,      T*-(X, x')e'Lj(x')d£l 

+ Ck,m„ j TJ(X, x')e"m(x')u,dr   (3) 

where T\{X, X') represents the stress component a^ at point x 
induced by a unit force acting at point x' along the jt^-axis. T 
is the boundary of domain O. If inelastic strain components of 
e^,(x) are constant in fl, eqn (3) is reduced to 

{I ffJOO = C«^ |   Tli{x,x')uldT\e'U^) (4) 

where e^„(fi) is the constant inelastic strain in fi. The residual 
stress field is 

ffj-(x) = o-J(x) - Cijkle'u(x) (5) 
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Fig. 3   Euler angles and representation of crystal orientations 

3.2 Residual Stress Influence Coefficient. To calculate 
the residual stress field numerically, the discretization of a con- 
tinuous problem is needed. In the following, the domain Q. in 
an extended solid is divided into a number of subdomains or 
elements fi?. In each of them, it is assumed that the inelastic 
strain t~ is uniform. After applying Eqs. (4) and (5) to fi?, the 
residual stress field due to e^,(x')(x' € Qq) is 

ffj(x) 

U, <W|(x, x')u,dT9 - H(x, n,)Q™ \e'Uttq) (6) 

where the function H(x, Clq) is defined as 

1,   x G 0, 
H{x, Q,) = 

o, x c a 

Generally, residual stress field aj-(x) varies from one point to 
another. The volume average of a^x) over subdomain ilp is 
taken to represent the residual stresses in element fip. Letting 
CTj(fip) represent the residual stresses in Qp due to e™ in fi,, 
we have 

***** 

o°„ 

Fig. 4   Polycrystal model of fatigue crack initiation 
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Fig. 5   Layout of elements 

orj(n,) = Gijmn(.np, fi,)ei(n,) (7) 

where Gijmn(Q.p, flq) are called the residual stress influence coef- 
ficients, which represent the residual stresses in subdomain fip 

caused by unit inelastic strain components in subdomain Clq. 
For the resolved residual shear stress r'aB in slip system aß 

in Q.p due to the resolved plastic shear strain ef, in slip system 
£77 in Qq, Eq. (7) can be rewritten by the tensor transformation 
as 

Trafi(Slp) = G(aß, Qp; ft, fi,)ef,(n,) (8) 

where G(aß, Q,p; £?j, Q?) represents the residual resolved shear 
stress in slip system aß in flp caused by a unit resolved plastic 
shear strain in slip system £77 in fl,. The total resolved shear 
stress raß in slip system aß in Qp is 

raß{Üp) = r'aß + r^ + H G(aß, fl,; ^, Q,)ef, 
9   in 

(9) 

The summation with regard to slip system £77 includes all the 
slip systems in Q,. 

3.3 Generalized Plane Strain Problem. The thickness 
of fatigue bands is much smaller than the length (dimension 
along the x3-axis) as observed at the free surface of metals. 
Therefore, the problem is considered under the plane strain 
deformation. The plastic strain due to slip in the secondary slip 
system is not confined to the xxx2 plane. This causes an equiva- 
lent force component F3 acting along the ^-direction. The exis- 
tence of this F3 requires a modification of the plane strain prob- 
lem. Hence, the generalized plane strain problem is considered 
in the present study. A similar problem is shown in the analysis 
of prismatic anisotropic bars by Lekhnitski (1963). This gener- 
alized plane strain deformation is defined as 

M, = Ki(jci, x2),   i = 1, 2, 3 

where u: is the displacement component along x,-axis. This 
gives 

a>i = H l -2V 6i}6 + 2 ("'v + "y,) J 
where 6 = MU + M2.2 and v is the Poisson's ratio. The equilib- 
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10 20 30 « 
Distance From Free Surface, Microns 

Fig. 6   Modified Schmid factor varying along slice P 

2000 Cycles 

10 20 30 to so 
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Fig. 8   Plastic shear strain distributions in P at 100 cycles and 2000 
cycles 

rium equations in terms of displacement components M, can be 
expressed as 

V\   + 

and 

where 

1      90     F:     n     .     ,   „ 
 — + — = 0,    i = 1, 2 
1 — 2\i axi     ß 

V2«3 + tl = o 

(10) 

(11) 

V2 = 
dx2     dx\ 

and Fi is the body force component. Equations (10) and (11) 
are not coupled and can be solved separately. 

The stress components rj(x, x') in Eq. (3) for the semi- 
infinite medium with the generalized plane strain deformation 
have been expressed in terms of the Airy's stress functions (Lin 
and Lin, 1974) as 

rj,(x,x') 

r\2(x,x') = 

d2<j>k r22(x,x') 
d2<f>k 

dx2 

d24>k 

dx, dx- 
,rk

n(x,x') = u\724>k, 

10D0 1500 2000 ; 
Number of Cycles 

Fig. 7   Plastic shear strain at free surface versus number of cycles 

Ti3(x,x') = Tk(x,x') = 0,   A; =1,2   (12) 

and 

r?3(x,x') = 
dx. 

rL(x,x') = ^ 
dx2 

r|(x, x') = 0,   for other i and./ (13) 

where the Airy's stress functions are 

<Mx, x') = -(p + q)(x2 - *2)(0, + #2) 

+ }q(xr - x[) In (Xi/X2) + 2pxlx[{xl + x[)/X2 

<k(x, x') = (p + q)(x2 - x2)(<9, + 92) 

+ \q(x2 - x2) In (XJX2) - 2pxix'1(x2 - x'2)/X2 

03(x,x') = -^-(lnX1 + lnX2) 

with 

P = 
1 

4TT(1 - v) 

9, = arctan 

62 = arctan 

x2     x2 

X\ — X\ 

x2 - x2 

q = p(l - 2v) 

■n & 6\ < 7T 

■K 

2 
h<l 

\X\    T   X ] / 

*, = (*,-*!)* +to-**)2, 
X2 =  (X,   + X!)2  +  (*2  - X2)

2 

By using Eqs. (6), (12) and (13), the residual stresses as 
well as the residual stress influence coefficients due to the in- 
elastic strains in the element of a specific shape can be readily 
calculated. 

4   Generalization of Equivalent Inclusion Method 
Eshelby's equivalent inclusion method (Eshelby, 1957, 

1961) is here used to transform an inhomogeneous problem into 
a homogeneous one by introducing a distribution of eigenstrains 
(Mura, 1982). Originally, this method was applied to solve the 
problems with an ellipsoidal inhomogeneity. In the present 
study, this method is generalized to solve inhomogeneous prob- 
lems of arbitrary shapes. 
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In the following, the matrix and vector notation will be used 
instead of tensor notation for convenience. It is easy to contract 
a second-order tensor with components GiJk! into a matrix with 
entries Gv by setting, for instance, Gn = Gmu Gn = Gn22, 
Gi6 = Gun + Glm and G61 = GI2n, etc. Vectors are denoted 
by boldface lowercase Roman or Greek letters and matrices by 
boldface uppercase Roman letters. The Eshelby's equivalent 
equation is 

C*(x)[e° + e(x) - e'(x)] 

= C[e° + e(x)-e*(x)-e'(x)],xen    (14) 

where fi is an inclusion or a subdomain with the elastic constant 
C*(x) embedded in an extended body D with the isotropic 
elastic constant C. e(x) is the disturbance strain, e*(x) the 
eigenstrain, ep(\) the plastic strain and e° uniform strain from 
which cr° = Ce° where <r° is the applied far-field stress. The 
stress a and strain e are vectors expressed as 

a =   {<ru, 022, <r33, O23, 0-13, 0-12 Y 

£ =   {«11, £22, £33> «23, «13, «12} 

where notation { • • •}T represents the transposition. Equation 
(14) shows that the eigenstrain e*(x) plays the same role as 
the plastic strain e^x) does in the homogeneous materials. 

When a continuous problem is discretized for the purpose of 
numerical analysis, the domain of £1 is further divided into N 
subdomains fi,-(l s i s N) called elements, in each of which 
both the eigenstrain e* and plastic strain e" are assumed to be 
uniform. The stresses in element fl, caused by the unit eigens- 
train e* in element fi, are the same as those caused by the unit 
plastic strain ep. Thus the stress o-- in fi, induced by both of 
the eigenstrains and plastic strains in all the elements is 

<rri = X G„e/ + I GtteJ,    lsisJV (15) 

where 

«11, £225 «33, «2 
* 

«13, 

L «11, «22, 
P        P        P        P   XT 

«33, «23, «13, «12/; 

in Qj and Gff are 6 X 6 matrices of the residual stress influence 
coefficients, which are contracted from GHmn(n,, fi;). 

For the generalized plane strain problem, «3 does not vary 
along the ^-direction. The total normal strain component £33 is 
equal to zero. The strain component £33 is here taken to be zero. 

U.D- 

7.0- Isotroplc Case 
<322=400MPa                                                               ..-■'' 

6.0- z' = ±0ASMPa                                                .---'' 

xc = 2Q0MPa                                  _.-'' 

5.D- ,.'"' 

i.0- ,---'"' 

3.0- y' 

2.0- / 

1.0- /                                                              flnLsotroplc Case 

0.O- 

ing 

0 10D 200 XO 4D0 5D0 

Number of Cycles 

9   Comparison of surface plastic strains with and without consider- 
crystal anisotropy 

Since the total strain £33 is the sum of £33 and £33, hence £33 = 
0. The stress-strain relation may be given as 

where 

C = 

and 

tr[ = Ce,- - C(e? + «?) 

~\ + 2p        X         0 0 0 1 
X        X + 2(x    0 0 0 
X             X         0 0 0 
0             0        2(i 0 0 5 

0             0         0 2(i 0 
L   0        00 0 2(1. 

"X + 2(i        X             X 0 0     0 
X        X + 2(i        X 0 0     0 
X             X        X + 2(i 0 0     0 
0             0             0 2(i 0     0 
0             0             0 0 2ß    0 

_ 000 0 0 2fi 

(16) 

€; {«ii, £22, £23, £13, £12}I   with   £33 = 0 

From Eqs. (15) and (16), expressing the disturbance strains e, 
in fi, in terms of ef and ep

k, we obtain 

e,. = C-'[C(£* + €f) + 2 G,ye* + I GfteJ], 

1 s J s ]V   (17) 

where 

1 — v — V 0 0 0 
— v 1 — v 0 0 0 
0 0 0 1 + V 0 0 
0 0 0 0 1  + V 0 

L 0 0 0 0 0 1   +  V 

in which E is the Young's modulus. 
The left-hand side of Eq. (14) can also be written for the 

generalized plane strain problems as 

<Ti tr* + C*c; - C*ef (18) 

where C* is a 6 X 6 anisotropic elastic stiffness matrix and C* 
a 6 X 5 matrix formed from matrix C* by taking the third 
column away. And trf = C*e° in which 

«°={«?: c°      c°     c°      ca   \T 1, £22, £23, «13, «12/ with «33^0 

Substituting Eq. (17) into Eq. (18) and Eq. (15), Eq. (14) 
becomes 

Te,* + I S,€; = q; + (C* - T)ep - I S„e?, 

Is is AT   (19) 

where 

T = C*C_IC 

Sj, = (C*C-1-I)Giy 

q, = er0 - o-f 

tr° = Ce° 

and I is a 6 X 6 unit matrix. 
It can be seen that eigenstrains ef depend on the applied 

load o-0 and the distribution of plastic strains e' as well. Equa- 
tion (19) is a set of linear algebraic equations with unknowns 
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e,*. Solving these equations for ef in all elements ft,, we can 
express e,- as 

e?=p,-+lR,^    l^i^N (20) 

where p, is a vector in terms of or0 in ft, and R* is the matrix 
relating the plastic strains ep

k in ft* to the eigenstrains ef in ft,-. 
The total stress in ft,-, obtained by substituting Eq. (20) into 
Eq. (15), is 

= o-0 + I GiiPj + I (GÄ + I G,yR,*)e?      (21) 
; * ; 

In the above equation, the term of 2 G.jP, is a modification 
to the effect of the applied load <r° and 2 GyR,* the one to the 
matrix Gik of the residual stress influence coefficients due to 
the inhomogeneity. 

Under the stress component a\2 alone, Eq. (21) reduces to 

O";  = PiO-22 + X Gike 

where 

and 

Plff22 = «r° + I G^p, 

G,* = Gik + X GjjRji: 
j 

For slip system aß in element ft,, we have 

el = m0/3e£ß; 

forming the inhomogeneous problem into a homogeneous one. 
The summation with regard to slip system £r? includes all the 
slip systems in kth element. It can be seen that Eq. (22) corre- 
sponds to Eq. (9). 

5 Effect of Crystal Elastic Anisotropy on Fatigue 
Crack Initiation in Polycrystals 

5.1 Elastic Constants of Monocrystalline and Polycrys- 
talline Crystals. In the present study, nickel-base superalloy 
polycrystals of FCC structure are taken for the numerical analy- 
sis. Fatigue crack initiation of other materials can be analyzed 
by the same approach. 

There are many experimental data available for nickel-base 
superalloy single crystals in the literature. Since the alloy com- 
positions vary with different materials tested, the elastic con- 
stants obtained may slightly differ from each other. In the fol- 
lowing analysis, the elastic constants of a nickel-base superalloy 
Ni3Al single crystal given by Yang (1985) are used. The elastic 
compliance moduli in 10 '2/GPa with respect to the crystal axes 
[001], [010] and [100] in the same notation as Yang's are 

Sn = Sun = 1.01 

5« = Sim = -0.393 

S44 = 4512i2 = 0.848 

The crystal orientations with respect to the loading axes 
(fixed coordinates) are represented by the Euler angles (9, </>, 
i/0 as shown in Fig. 3. The global elastic compliance in tensor 
notation is 

L= [U = 

cos 9 cos <f> cos 41 - sin <f> sin if/,    -cos 9 cos <f> sin ip - sin <j> cos i/»,   sin 9 cos 4> 
cos 9 sin 4> cos </< + cos <f> sin t/>,   -cos 9 sin <f> sin ip + cos <f> cos if/,    sin 9 sin <p 

-sin 9 cos i/f, sin 9 sin ifi cos 9 

and 
Sijkm  —   Ha'-jßLk)J-mybaßK'y (23) 

Taßi  — naß(Tj 

where e"aßi and Taßi axe. the plastic shear strain and resolved 
shear stress, respectively, and 

ma/3 = {»in, m22, m33, m23, mi3, ml2}aß 

n„,s = {nu, n22, "33, «23» «n> nn}aß 

in which m,j and n,y are composed of direction cosines of slip 
system aß. The total resolved shear stress in the slip system is 

(22) 

in which 

Taßi = Taßi + T aßi + T aßi 

Taßi = nlßPiOxi = Saßj012 

where saßi is the modified Schmid factor with the consideration 
of anisotropic elastic constants and G(aß, fi,; $77, Q,) expressed 

G(aß, ft,-; £r?, ft*) = nlßGikmiv 

are the modified residual stress influence coefficients after trans- 
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where 

The inverse of SiJkm is the elastic stiffness modulus. Equation 
(23) was used to obtain the elastic stiffness matrices of single 
crystals referring to the specimen axes. 

A range of test data of the Young's modulus and shear modu- 
lus of Ni3Al polycrystal and its alloys are found in the article 
by Stoloff (1989). The isotropic elastic constants of Poisson's 
ratio, v = 0.3, and shear modulus, \i = 65 GPa, are here used 
for our analysis of Ni3Al polycrystals. 

5.2 Physical Model and Numerical Results. A physical 
model to study the elastic anisotropy and inhomogeneity of crystals 
on the fatigue crack initiation in a polycrystal is shown in Fig. 4. 
An aggregate of crystals with various crystallographic orientations 
is embedded near the free surface in a semi-infinite elastic medium. 
The cross-sections of these crystals are either whole or part of a 
hexagon. Since the crystals at some distance away from the surface 
crystal, in which a fatigue band is analyzed, are randomly oriented, 
these surrounding crystals are assumed to be isotropic and homoge- 
neous. The fatigue band is composed of three thin slices P, Q, 
and R. The orientation of surface crystal #1 is determined by the 
orientation of the primary slip system, which is 45 deg inclining 
to ;c2-axis. The elastic stiffness matrix of this crystal with respect 
to the loading axes is 
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c* = 

244.33    118.19      83.91    -27.42   -82.29   -13.71 
118.19 244.33 83.91 82.29 27.43 -13.71 
83.91 83.91 278.61 -54.86 54.86 27.43 

-13.71 41.14 -27.43 153.56 27.43 27.43 
-41.14 13.71 27.43 27.43 153.56 -27.43 
-6.86 -6.86 13.71 27.43 -27.43 222.13. 

The surface crystal with the fatigue band and the surrounding 
crystals are shown in Fig. 4. The fatigue band is divided into 
parallelogram elements and the remaining parts of the crystals 
are divided into trapezoidal elements. The paralellogram ele- 
ments are assumed to have linear inelastic strains and the trape- 
zoidal elements to have constant inelastic strains. Fig. 5 shows 
the layout of these.elements in the aggregate. 

The local stresses in the surface crystal containing the fatigue 
band are affected not only by the applied load but also by the 
orientations of its surrounding grains. Plastic strains can develop 
both inside and outside the fatigue band and the residual stresses 
are affected by the orientations of the surrounding crystals. The 
global elastic stiffness matrix of crystals of the orientation (9, 
<t>, </0 is denoted as C*(0, <f>, ip). 

The surrounding crystals can have different sets of orienta- 
tions. In the following, one set is calculated to illustrate the 
effect of anisotropy and inhomogeneity on the fatigue crack 
initiation. In this set, the orientation of crystals #2 and #3 is 
chosen to be (60, 30, 30 deg), crystals #4 and #5 to be (0, 0, 
0 deg) and crystal #6 to be (30, 30, 60 deg). The global elastic 
stiffness matrices of crystals with these orientations are listed 
as follows 

the sliding starts inside the band, where the Schmid factor takes 
the maximum value. The case, in which a°2 = 397MPa, T' = 
±0.5MPa and TC

 = 200MPa, was analyzed. The surface plastic 
resolved shear strain vs. the number of cycles is shown in Fig. 
7. If crystal anisotropy is neglected, the fatigue band will not 
develop in the surface crystal under the applied load. Therefore, 
the threshold of fatigue crack initiation is lowered with the 
consideration of crystal anisotropy. Fig. 8 shows the plastic 
resolved shear strain distributions in P at 100 cycles and 2000 
cycles, respectively. 

The cumulative surface plastic shear strains versus the 
number of loading cycles for two cases, one with the consid- 
eration of crystal anisotropy and one without, were calcu- 
lated and plotted in Fig. 9. It is seen that the neglect of the 
crystal anisotropy in a polycrystal may cause significant er- 
ror in calculating the slip distribution and in estimating the 
fatigue crack initiation. 

Acknowledgment 

This research is supported by the U. S. Air Force Office of 
Scientific Research Grant F49620-92-0171. The interest of Dr. 

C*(60, 30, 30 deg) = 

279.50      79.49     87.44   -75.16   -29.89     -4.18 
79.49 
87.44 

-37.58 
-14.95 
. -2.09 

300.71 
66.23 

9.74 
13.02 
10.44 

66.23 
292.76 
27.84 

1.93 
-8.35 

19.49 
55.67 

118.20 
-16.70 

26.04 

26.04 
3.86 

-16.70 
160.63 

-75.16 

20.88 
-16.70 

26.04 
-75.16 
144.72. 

C*(0, 0, 0 deg) = 

196.33    125.05    125.05 
125.05 
125.05 

0.0 
0.0 

.   0.0 

196.33 
125.05 

0.0 
0.0 
0.0 

125.05 
196.33 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

235.85 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

235.85 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 

235.85. 

GPa 

C*(30, 30, 60 deg) 

247.36 
122.16 
76.91 
-9.89 
40.29 

.   3.64 

122.16 
216.65 
107.62 
34.91 
-5.87 

7.54 

76.91 
107.62 
261.90 
-25.01 
-34.42 
-11.17 

-19.78 
69.81 

-50.03 
201.00 
-22.35 
-11.74 

80.57 
-11.74 
-68.83 
-22.35 
139.56 

-19.78 

7.28 
15.07 

-22.35 
-11.74 
-19.78 
230.06. 

GPa 

GPa 

With the method described, the modified Schmid factor sa0 

of the primary slip system varying along slice P is shown in 
Fig. 6. The Schmid factor varies from 0.42 at the free surface 
to the maximum value of 0.59. It is seen that the effect of this 
anisotropy on the response to the applied load makes the Schmid 
factor greater than 0.5 in a large part of the slice. The drop of 
the modified Schmid factor close to the free surface seems to 
be due to the less constraint on the deformation near the surface 
than in the interior. Without considering the crystal anisotropy, 
the Schmid factor is uniformly 0.5. The increase of the Schmid 
factor decreases the applied load required to activate the plastic 
slip in the band in comparison with the isotropic and homoge- 
neous case. The region in which the total resolved shear stress 
reaches the critical shear stress rc will slide first. Therefore, 
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